Pada pertemuan kali ini, kita akan menggunakan data dari tabel 3.7 (Ramus Bone) dari buku Methods of Multivariate Analysis by Alvin C. Rencher, William F. Christensen. 3rd Edition
data <- read.csv ('https://raw.githubusercontent.com/farhanage/dataset-for-study/refs/heads/main/Analisis%20Multivariat/Tabel%203.7%20(Ramus%20Bone%20Length%20at%20Four%20Ages%20).csv' , sep= ';' )
head (data)
Individual y1 y2 y3 y4
1 1 47.8 48.8 49.0 49.7
2 2 46.4 47.3 47.7 48.4
3 3 46.3 46.8 47.8 48.5
4 4 45.1 45.3 46.1 47.2
5 5 47.6 48.5 48.9 49.3
6 6 52.5 53.2 53.3 53.7
definisikan matriks Y
Y <- as.matrix (data[2 : 5 ])
Y
y1 y2 y3 y4
[1,] 47.8 48.8 49.0 49.7
[2,] 46.4 47.3 47.7 48.4
[3,] 46.3 46.8 47.8 48.5
[4,] 45.1 45.3 46.1 47.2
[5,] 47.6 48.5 48.9 49.3
[6,] 52.5 53.2 53.3 53.7
[7,] 51.2 53.0 54.3 54.5
[8,] 49.8 50.0 50.3 52.7
[9,] 48.1 50.8 52.3 54.4
[10,] 45.0 47.0 47.3 48.3
[11,] 51.2 51.4 51.6 51.9
[12,] 48.5 49.2 53.0 55.5
[13,] 52.1 52.8 53.7 55.0
[14,] 48.2 48.9 49.3 49.8
[15,] 49.6 50.4 51.2 51.8
[16,] 50.7 51.7 52.7 53.3
[17,] 47.2 47.7 48.4 49.5
[18,] 53.3 54.6 55.1 55.3
[19,] 46.2 47.5 48.1 48.4
[20,] 46.3 47.6 51.3 51.8
Vektor Mean
Vektor mean dari matriks Y dapat dihitung dengan fungsi colMeans()
y1 y2 y3 y4
48.655 49.625 50.570 51.450
Matriks Varians-Kovarians
Matriks varians-kovarians dari matriks Y dapat dihitung dengan fungsi cov()
y1 y2 y3 y4
y1 6.329974 6.189079 5.777000 5.548158
y2 6.189079 6.449342 6.153421 5.923421
y3 5.777000 6.153421 6.918000 6.946316
y4 5.548158 5.923421 6.946316 7.464737
Generalized Sample Variance
Generalized Sample Variance dari matriks Y dapat dihitung dengan mencari determinan dari matriks varians-kovarians Y
cov_Y <- cov (Y)
det (cov_Y)
Total Sample Variance
Total Sample Variance dari matriks Y dapat dihitung dengan mencari trace dari matriks varians-kovarians Y
Warning: package 'matlib' was built under R version 4.4.1
Matriks Korelasi
Matriks Korelasi dari matriks Y dapat dihitung dengan fungsi cor()
y1 y2 y3 y4
y1 1.0000000 0.9686511 0.8729938 0.8071246
y2 0.9686511 1.0000000 0.9212312 0.8537046
y3 0.8729938 0.9212312 1.0000000 0.9666227
y4 0.8071246 0.8537046 0.9666227 1.0000000
Matriks dengan Subset Variabel
Tinjau data dari tabel 3.5 buku rencher (Relative Weight, Blood Glucose, and Insulin Levels)
T3_5 <- read.table ('https://raw.githubusercontent.com/farhanage/dataset-for-study/refs/heads/main/Analisis%20Multivariat/T3_5_DIABETES.DAT' )
head (T3_5)
V1 V2 V3 V4 V5 V6
1 1 0.81 80 356 124 55
2 2 0.95 97 289 117 76
3 3 0.94 105 319 143 105
4 4 1.04 90 356 199 108
5 5 1.00 90 323 240 143
6 6 0.76 86 381 157 165
definisikan bentuk matriksnya
M3_5 <- as.matrix (T3_5[2 : 6 ])
colnames (M3_5) <- c ('y1' , 'y2' , 'x1' , 'x2' , 'x3' )
head (M3_5)
y1 y2 x1 x2 x3
[1,] 0.81 80 356 124 55
[2,] 0.95 97 289 117 76
[3,] 0.94 105 319 143 105
[4,] 1.04 90 356 199 108
[5,] 1.00 90 323 240 143
[6,] 0.76 86 381 157 165
Vektor Mean Subset
Sama seperti pada vektor mean sebelumnya, dapat digunakan fungsi colMeans()
mean_vec <- colMeans (M3_5)
mean_vec
y1 y2 x1 x2 x3
0.9178261 90.4130435 340.8260870 171.3695652 97.7826087
y_bar <- mean_vec[1 : 2 ]; y_bar
y1 y2
0.9178261 90.4130435
x_bar <- mean_vec[3 : 5 ]; x_bar
x1 x2 x3
340.82609 171.36957 97.78261
Matriks Varians-Kovarians Subset
Sama seperti pada Matriks Varians-Kovarians sebelumnya, dapat digunakan fungsi cov()
y1 y2 x1 x2 x3
y1 0.01618184 0.216029 0.7871691 -0.2138454 2.189072
y2 0.21602899 70.558937 26.2289855 -23.9560386 -20.841546
x1 0.78716908 26.228986 1106.4135266 396.7323671 108.383575
x2 -0.21384541 -23.956039 396.7323671 2381.8826087 1142.637681
x3 2.18907246 -20.841546 108.3835749 1142.6376812 2136.396135
Partisi Matriks Varians-Kovarians
Partisi dari matriks (subset) dapat diakses deangan indexing baris dan kolom suatu matriks.
Indexing pada matrix dapat dilakukan dengan format matrix_obj[<rangebaris>, <rangekolom>]
misal ingin diambil nilai baris ke 1 hingga 2 dan kolom 3 hingga 4 dari matriks Y, maka dapat dilakukan indexing:
Y[1:2, 3:4]
S_xx <- S[1 : 2 , 1 : 2 ]; S_xx
y1 y2
y1 0.01618184 0.216029
y2 0.21602899 70.558937
S_yy <- S[3 : 5 , 3 : 5 ]; S_yy
x1 x2 x3
x1 1106.4135 396.7324 108.3836
x2 396.7324 2381.8826 1142.6377
x3 108.3836 1142.6377 2136.3961
S_xy <- S[3 : 5 , 1 : 2 ]; S_xy
y1 y2
x1 0.7871691 26.22899
x2 -0.2138454 -23.95604
x3 2.1890725 -20.84155
S_yx <- S[1 : 2 , 3 : 5 ]; S_yx
x1 x2 x3
y1 0.7871691 -0.2138454 2.189072
y2 26.2289855 -23.9560386 -20.841546
Matriks Korelasi Subset
Sama seperti pada Matriks Korelasi sebelumnya, dapat digunakan fungsi cor()
y1 y2 x1 x2 x3
y1 1.00000000 0.20217252 0.18603532 -0.03444497 0.37231056
y2 0.20217252 1.00000000 0.09387431 -0.05843578 -0.05368006
x1 0.18603532 0.09387431 1.00000000 0.24438735 0.07049590
x2 -0.03444497 -0.05843578 0.24438735 1.00000000 0.50653268
x3 0.37231056 -0.05368006 0.07049590 0.50653268 1.00000000
Partisi korelasi dapat dilakukan sebagaimana partisi dilakukan pada matriks Varians-Kovarians Subset
Kombinasi Linear Vektor
misal ingin dibentuk:
\(z_1 = y_1 + y_2 + y_3 + y_4\)
dan
\(z_2 = 2y_1 + 3y_2 - 4y_3 - y_4\)
# z1 = y1 + y2 + y3 + y4
z1 <- Y[, 1 ] + Y[, 2 ] + Y[, 3 ] + Y[, 4 ]
z1
[1] 195.3 189.8 189.4 183.7 194.3 212.7 213.0 202.8 205.6 187.6 206.1 206.2
[13] 213.6 196.2 203.0 208.4 192.8 218.3 190.2 197.0
# z2 = 2y1 + 3y2 - 4y3 - y4
z2 <- 2 * Y[, 1 ] + 3 * Y[, 2 ] - 4 * Y[, 3 ] - Y[, 4 ]
z2
[1] -3.7 -4.5 -6.7 -5.5 -4.2 -2.3 -10.3 -4.3 -15.0 -6.5 -1.7 -22.9
[13] -7.2 -3.9 -6.2 -7.6 -5.6 -5.3 -5.9 -21.6
y1 y2 y3 y4
[1,] 47.8 48.8 49.0 49.7
[2,] 46.4 47.3 47.7 48.4
[3,] 46.3 46.8 47.8 48.5
[4,] 45.1 45.3 46.1 47.2
[5,] 47.6 48.5 48.9 49.3
[6,] 52.5 53.2 53.3 53.7
[7,] 51.2 53.0 54.3 54.5
[8,] 49.8 50.0 50.3 52.7
[9,] 48.1 50.8 52.3 54.4
[10,] 45.0 47.0 47.3 48.3
[11,] 51.2 51.4 51.6 51.9
[12,] 48.5 49.2 53.0 55.5
[13,] 52.1 52.8 53.7 55.0
[14,] 48.2 48.9 49.3 49.8
[15,] 49.6 50.4 51.2 51.8
[16,] 50.7 51.7 52.7 53.3
[17,] 47.2 47.7 48.4 49.5
[18,] 53.3 54.6 55.1 55.3
[19,] 46.2 47.5 48.1 48.4
[20,] 46.3 47.6 51.3 51.8
Latihan Soal
Gunakan data dari tabel 3.5 buku rencher untuk mengerjakan soal-soal berikut:
bentuk matrix \(Z = (z_1, z_2, z_3)\) dengan
\(z_1 = x_1 + x_2 + x_3\)
\(z_2 = 3y_1 + 2y_2 - x_1^{0.5} - 3x_2 + 7x_3\)
dan
\(z_3 = y_1^2 + y_2 - 5x_1 + 2x_2 - x_3\)
Tentukan Vektor Mean dari matriks Z
Tentukan Matriks Varians-Kovarians dari matriks Z
Tentukan Nilai Generalized Sample Variance dari matriks Z
Tentukan Matriks Korelasi dari matriks Z